Gönderen Konu: 1. Dereceden 1 Bilinmeyenli Denklemler  (Okunma sayısı 8835 defa)

0 Üye ve 1 Ziyaretçi konuyu incelemekte.

rana_94

  • Ziyaretçi
1. Dereceden 1 Bilinmeyenli Denklemler
« : Mayıs 01, 2009, 01:06:39 ÖS »
Birinci dereceden bir
bilinmeyenli denklemler

ve a 0 olmak üzere ax +b=0 şeklindeki eşitliklere birinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan x sayısına denklemin kökü, bu kökün oluşturduğu kümeye çözüm kümesi denir.

ax+b=0 ise sayısı denklemin köküdür.

Çözüm kümesi:

Ç= olur.

Örnekler:

1) 6x +12 =0 denkemini çözüm kümesini bulunuz.

Çözüm:

6x= -126x+12=0
x= x=-2 Ç= olur.
2)-5x + 6 + x = 1 –x + 8 denkleminin çözüm kümesini bulunuz.

Çözüm:

-5x+ 6+ x =1 –x +8
-4x + 6 = -x + 9
-4x +x = 9-6
-3x=3
x= -1 Ç=
3) denkleminin çözüm kümesini bulunuz.
Çöm: denklemde paydası eşitlenir:



4) x-{2x-[x+1-(3x-5)]} = 3 ise x kaçtır?
Çözüm:

[x+1-3x+5]
[-2x+6]
{2x+2x-6}
x-4x+6 = 3
x= 1 Sonuç: 1-3x =

5) 9(1-2x) – 5(2-5x) = 20 denkleminin çözüm kümesi nedir?
Çözüm:

9(1-2x) – 5(2-5x) = 20
9-18x-10+25x = 20
7x-1= 20
7x = 21
x = 3
Sonuç: 3

6) x 2 x 1
----- + ----- = ----- + 1----- denkleminin çözüm kümesi nedir?
3 5 5 3

Çözüm:
x 2 x 4
----- + ----- = ----- + -----
3 5 5 3
(5) (3) (3) (5)

5x+6 3x+20
------- = ------- = 5x + 6 = 3x+20
15 15

x = 7 Sonuç: 72x = 14


7) Kendisine katı eklendiğinde 72 eden sayı kaçtır?

Çözüm:


=
 2x+5=1 ise “x” kaçtır?

Çözüm:
2x = -4
Sonuç = {-2}x = -2

9) Toplamları 77 olan iki sayıdan birinin 3 katı, aynı sayının 4 katıyla toplamına eşittir.Bu Sayıların Küçük Olanı Kaçtır?

Çözüm:

3x+4x = 77
7x = 77
x = 7
3x = 33 Sonuç = {33}

10) Bu denklemdeki x’ in değerini bulunuz.
Çözüm:





x = 5 Sonuç = {5}

11) “x” in değerini bulunuz.
Çözüm:




- 45 = 5x-35
5x = -10
x = -2

Sonuç = {-2}

12) “x” in değerini bulunuz.

Çözüm:


3x-5 = -20
3x = -15
x = -5 Sonuç = {-5}

13) denklemini ve koşuluyla x’i bulunuz.
Çözüm

x=-1 fakat (x 1 ve x koşulundan dolayı

Ç=Ǿdir

14) için x ’in değeri kaçtır?
Çözüm
x=3 (x 3 koşulundan dolayı )

Ç=Ǿdir


Birinci Dereceden İki
Bilinmeyenli Denklemler

olmak üzere açık önermesine birinci dereceden iki bilinmeyenli denklem denir.
denkleminde x ’e verilebilecek her değer için bir y değeri bulunabilir. Bulunan (x,y) ikililerinden her birine denklemin bir çözümü denir. Çözüm kümesi sonsuz elamanlıdır.

Örnekler:

1) denklemini çözüm kümesini bulup düzlemde göster.

(0,-1)x=0 için y=2.0-1
(1,1)x=1 için y=2.1-1
(2,3)x=2 için y=2.2-1
(3,5)x=3 için y=2.3-1
(y 2x –1)x için y=2x-1




GoogleTagged


 

Related Topics

  Konu / Başlatan Yanıt Son İleti
0 Yanıt
7849 Gösterim
Son İleti Aralık 13, 2008, 01:40:18 ÖÖ
by MiM
2 Yanıt
9516 Gösterim
Son İleti Aralık 14, 2008, 08:53:39 ÖÖ
by MiM
1 Yanıt
24546 Gösterim
Son İleti Aralık 14, 2008, 09:14:52 ÖÖ
by MiM
7 Yanıt
16878 Gösterim
Son İleti Temmuz 04, 2009, 09:09:10 ÖÖ
by kumsaati
0 Yanıt
1169 Gösterim
Son İleti Aralık 03, 2013, 05:55:00 ÖS
by Fussilet

Powered by SMF 2.0.4 | SMF © 2006–2011, Simple Machines LLC
TinyPortal © 2005-2012 | Theme Lamartine by Smfdesign | dizi izle | Bilezik Modelleri | Haber | gebze evden eve nakliyat | Dizi izle | film izle | filmperest.com | Çimstone Fiyatları | Full Film izle
Bu sayfa 0.337 saniyede 31 sorgu ile oluşturulmuştur